1,152 research outputs found

    KELT-16b: A Highly Irradiated, Ultra-short Period Hot Jupiter Nearing Tidal Disruption

    Get PDF
    We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (V = 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with T_(eff) = 6236 ± 54 K, log g⋆ = 4.253^(+0.031)_(-0.036), [Fe/H] = -0.002^(+0.086)_(-0.085), M⋆ = 1.211^(+0.043)_(-0.046) M⊙, and R⋆ = 1.360^(+0.064)_(-0.15)R⊙. The planet is a relatively high-mass inflated gas giant with M_P = 2.75^(+0.16)_(-0.15)M_J, R_P = 1.415^(+0.084)_(-0.067)R_J, density Ρ_p = 1.20 ± 0.18 g cm^(−3), surface gravity Log g_P = 3.530^(+0.042)_(-0.049), and T_(eq) = 2453^(+55)_(-47)K. The best-fitting linear ephemeris is T_C = 2457247.24791 ± 0.00019 BJD_(TBD) and P = 0.9689951 ± 0.0000024 day. KELT-16b joins WASP-18b, −19b, −43b, −103b, and HATS-18b as the only giant transiting planets with P < 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature–pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass–metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere ~1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few ×105 years (for a stellar tidal quality factor of Q’* = 10^5). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai–Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit

    KELT-16b: A Highly Irradiated, Ultra-short Period Hot Jupiter Nearing Tidal Disruption

    Get PDF
    We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (V = 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with T_(eff) = 6236 ± 54 K, log g⋆ = 4.253^(+0.031)_(-0.036), [Fe/H] = -0.002^(+0.086)_(-0.085), M⋆ = 1.211^(+0.043)_(-0.046) M⊙, and R⋆ = 1.360^(+0.064)_(-0.15)R⊙. The planet is a relatively high-mass inflated gas giant with M_P = 2.75^(+0.16)_(-0.15)M_J, R_P = 1.415^(+0.084)_(-0.067)R_J, density Ρ_p = 1.20 ± 0.18 g cm^(−3), surface gravity Log g_P = 3.530^(+0.042)_(-0.049), and T_(eq) = 2453^(+55)_(-47)K. The best-fitting linear ephemeris is T_C = 2457247.24791 ± 0.00019 BJD_(TBD) and P = 0.9689951 ± 0.0000024 day. KELT-16b joins WASP-18b, −19b, −43b, −103b, and HATS-18b as the only giant transiting planets with P < 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature–pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass–metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere ~1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few ×105 years (for a stellar tidal quality factor of Q’* = 10^5). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai–Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit

    KELT-10b: The First Transiting Exoplanet from the KELT-South Survey -- A Hot Sub-Jupiter Transiting a V = 10.7 Early G-Star

    Get PDF
    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V=10.7V = 10.7 star (TYC 8378-64-1), with Teff_{eff} = 5948±745948\pm74 K, logg\log{g} = 4.3190.030+0.0204.319_{-0.030}^{+0.020} and [Fe/H] = 0.090.10+0.110.09_{-0.10}^{+0.11}, an inferred mass M_{*} = 1.1120.061+0.0551.112_{-0.061}^{+0.055} M_{\odot} and radius R_{*} = 1.2090.035+0.0471.209_{-0.035}^{+0.047} R_{\odot}. The planet has a radius RP_{P} = 1.3990.049+0.0691.399_{-0.049}^{+0.069} RJ_{J} and mass MP_{P} = 0.6790.038+0.0390.679_{-0.038}^{+0.039} MJ_{J}. The planet has an eccentricity consistent with zero and a semi-major axis aa = 0.052500.00097+0.000860.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0T_{0} = 2457066.72045±\pm0.00027 BJDTDB_{TDB} and P = 4.1662739±\pm0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq_{eq} = 137723+281377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.8170.054+0.0680.817_{-0.054}^{+0.068} ×\times 109^9 erg s1^{-1} cm2^{-2}, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next \sim1 Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V << 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.Comment: 20 pages, 13 figures, 7 tables, accepted for publication in MNRA

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom

    KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star

    Get PDF
    We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of 1.28±0.181.28 \pm 0.18 MJ, radius of 1.530.047+0.0461.53_{-0.047}^{+0.046} RJ, and an orbital period of 2.7347749±0.00000392.7347749 \pm 0.0000039 days. The bright host star (HD33643; KELT-7) is an F-star with V=8.54V=8.54, Teff =678949+50=6789_{-49}^{+50} K, [Fe/H] =0.1390.081+0.075=0.139_{-0.081}^{+0.075}, and logg=4.149±0.019\log{g}=4.149 \pm 0.019. It has a mass of 1.5350.054+0.0661.535_{-0.054}^{+0.066} Msun, a radius of 1.7320.045+0.0431.732_{-0.045}^{+0.043} Rsun, and is the fifth most massive, fifth hottest, and the ninth brightest star known to host a transiting planet. It is also the brightest star around which KELT has discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed characterization given its relatively low surface gravity, high equilibrium temperature, and bright host star. The rapid rotation of the star (73±0.573 \pm 0.5 km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude of several hundred m/s. We find that the orbit normal of the planet is likely to be well-aligned with the stellar spin axis, with a projected spin-orbit alignment of λ=9.7±5.2\lambda=9.7 \pm 5.2 degrees. This is currently the second most rapidly rotating star to have a reflex signal (and thus mass determination) due to a planetary companion measured.Comment: Accepted to The Astronomical Journa

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M=1.4380.052+0.061MM_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R=2.720.17+0.21RR_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g=3.7270.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.370.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.0930.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm3^{-3}, surface gravity log gP=2.4070.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=171246+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal

    KELT-6b: A P~7.9 d Hot Saturn Transiting a Metal-Poor Star with a Long-Period Companion

    Get PDF
    We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V=10.38 host star (BD+31 2447) is a mildly evolved, late-F star with T_eff=6102 \pm 43 K, log(g_*)=4.07_{-0.07}^{+0.04} and [Fe/H]=-0.28 \pm 0.04, with an inferred mass M_*=1.09 \pm 0.04 M_sun and radius R_star=1.58_{-0.09}^{+0.16} R_sun. The planetary companion has mass M_P=0.43 \pm 0.05 M_J, radius R_P=1.19_{-0.08}^{+0.13} R_J, surface gravity log(g_P)=2.86_{-0.08}^{+0.06}, and density rho_P=0.31_{-0.08}^{+0.07} g~cm^{-3}. The planet is on an orbit with semimajor axis a=0.079 \pm 0.001 AU and eccentricity e=0.22_{-0.10}^{+0.12}, which is roughly consistent with circular, and has ephemeris of T_c(BJD_TDB)=2456347.79679 \pm 0.00036 and P=7.845631 \pm 0.000046 d. Equally plausible fits that employ empirical constraints on the host star parameters rather than isochrones yield a larger planet mass and radius by ~4-7%. KELT-6b has surface gravity and incident flux similar to HD209458b, but orbits a host that is more metal poor than HD209458 by ~0.3 dex. Thus, the KELT-6 system offers an opportunity to perform a comparative measurement of two similar planets in similar environments around stars of very different metallicities. The precise radial velocity data also reveal an acceleration indicative of a longer-period third body in the system, although the companion is not detected in Keck adaptive optics images.Comment: Published in AJ, 17 pages, 15 figures, 6 table
    corecore